1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
|
import time import random import copy import cv2 import os import math import numpy as np from skimage.util import random_noise from lxml import etree, objectify import xml.etree.ElementTree as ETl import argparse
def show_pic(img, bboxes=None): ''' 输入: img:图像array bboxes:图像的所有boudning box list, 格式为[[x_min, y_min, x_max, y_max]....] names:每个box对应的名称 ''' for i in range(len(bboxes)): bbox = bboxes[i] x_min = bbox[0] y_min = bbox[1] x_max = bbox[2] y_max = bbox[3] cv2.rectangle(img, (int(x_min), int(y_min)), (int(x_max), int(y_max)), (0, 255, 0), 3) cv2.namedWindow('pic', 0) cv2.moveWindow('pic', 0, 0) cv2.resizeWindow('pic', 1200, 800) cv2.imshow('pic', img) cv2.waitKey(0) cv2.destroyAllWindows()
class DataAugmentForObjectDetection(): def __init__(self, rotation_rate=0.5, max_rotation_angle=5, crop_rate=0.5, shift_rate=0.5, change_light_rate=0.5, add_noise_rate=0.5, flip_rate=0.5, cutout_rate=0.5, cut_out_length=50, cut_out_holes=1, cut_out_threshold=0.5, is_addNoise=True, is_changeLight=True, is_cutout=True, is_rotate_img_bbox=True, is_crop_img_bboxes=True, is_shift_pic_bboxes=True, is_filp_pic_bboxes=True):
self.rotation_rate = rotation_rate self.max_rotation_angle = max_rotation_angle self.crop_rate = crop_rate self.shift_rate = shift_rate self.change_light_rate = change_light_rate self.add_noise_rate = add_noise_rate self.flip_rate = flip_rate self.cutout_rate = cutout_rate
self.cut_out_length = cut_out_length self.cut_out_holes = cut_out_holes self.cut_out_threshold = cut_out_threshold
self.is_addNoise = is_addNoise self.is_changeLight = is_changeLight self.is_cutout = is_cutout self.is_rotate_img_bbox = is_rotate_img_bbox self.is_crop_img_bboxes = is_crop_img_bboxes self.is_shift_pic_bboxes = is_shift_pic_bboxes self.is_filp_pic_bboxes = is_filp_pic_bboxes
def _addNoise(self, img): ''' 输入: img:图像array 输出: 加噪声后的图像array,由于输出的像素是在[0,1]之间,所以得乘以255 ''' return random_noise(img, mode='gaussian', seed=int(time.time()), clip=True) * 255
def _changeLight(self, img): alpha = random.uniform(0.35, 1) blank = np.zeros(img.shape, img.dtype) return cv2.addWeighted(img, alpha, blank, 1 - alpha, 0)
def _cutout(self, img, bboxes, length=100, n_holes=1, threshold=0.5): ''' 原版本:https://github.com/uoguelph-mlrg/Cutout/blob/master/util/cutout.py Randomly mask out one or more patches from an image. Args: img : a 3D numpy array,(h,w,c) bboxes : 框的坐标 n_holes (int): Number of patches to cut out of each image. length (int): The length (in pixels) of each square patch. '''
def cal_iou(boxA, boxB): ''' boxA, boxB为两个框,返回iou boxB为bouding box ''' xA = max(boxA[0], boxB[0]) yA = max(boxA[1], boxB[1]) xB = min(boxA[2], boxB[2]) yB = min(boxA[3], boxB[3])
if xB <= xA or yB <= yA: return 0.0
interArea = (xB - xA + 1) * (yB - yA + 1)
boxAArea = (boxA[2] - boxA[0] + 1) * (boxA[3] - boxA[1] + 1) boxBArea = (boxB[2] - boxB[0] + 1) * (boxB[3] - boxB[1] + 1) iou = interArea / float(boxBArea) return iou
if img.ndim == 3: h, w, c = img.shape else: _, h, w, c = img.shape mask = np.ones((h, w, c), np.float32) for n in range(n_holes): chongdie = True while chongdie: y = np.random.randint(h) x = np.random.randint(w)
y1 = np.clip(y - length // 2, 0, h) y2 = np.clip(y + length // 2, 0, h) x1 = np.clip(x - length // 2, 0, w) x2 = np.clip(x + length // 2, 0, w)
chongdie = False for box in bboxes: if cal_iou([x1, y1, x2, y2], box) > threshold: chongdie = True break mask[y1: y2, x1: x2, :] = 0. img = img * mask return img
def _rotate_img_bbox(self, img, bboxes, angle=5, scale=1.): ''' 参考:https://blog.csdn.net/u014540717/article/details/53301195crop_rate 输入: img:图像array,(h,w,c) bboxes:该图像包含的所有boundingboxs,一个list,每个元素为[x_min, y_min, x_max, y_max],要确保是数值 angle:旋转角度 scale:默认1 输出: rot_img:旋转后的图像array rot_bboxes:旋转后的boundingbox坐标list ''' w = img.shape[1] h = img.shape[0] rangle = np.deg2rad(angle) nw = (abs(np.sin(rangle) * h) + abs(np.cos(rangle) * w)) * scale nh = (abs(np.cos(rangle) * h) + abs(np.sin(rangle) * w)) * scale rot_mat = cv2.getRotationMatrix2D((nw * 0.5, nh * 0.5), angle, scale) rot_move = np.dot(rot_mat, np.array([(nw - w) * 0.5, (nh - h) * 0.5, 0])) rot_mat[0, 2] += rot_move[0] rot_mat[1, 2] += rot_move[1] rot_img = cv2.warpAffine(img, rot_mat, (int(math.ceil(nw)), int(math.ceil(nh))), flags=cv2.INTER_LANCZOS4)
rot_bboxes = list() for bbox in bboxes: xmin = bbox[0] ymin = bbox[1] xmax = bbox[2] ymax = bbox[3] point1 = np.dot(rot_mat, np.array([(xmin + xmax) / 2, ymin, 1])) point2 = np.dot(rot_mat, np.array([xmax, (ymin + ymax) / 2, 1])) point3 = np.dot(rot_mat, np.array([(xmin + xmax) / 2, ymax, 1])) point4 = np.dot(rot_mat, np.array([xmin, (ymin + ymax) / 2, 1])) concat = np.vstack((point1, point2, point3, point4)) concat = concat.astype(np.int32) rx, ry, rw, rh = cv2.boundingRect(concat) rx_min = rx ry_min = ry rx_max = rx + rw ry_max = ry + rh rot_bboxes.append([rx_min, ry_min, rx_max, ry_max])
return rot_img, rot_bboxes
def _crop_img_bboxes(self, img, bboxes): ''' 裁剪后的图片要包含所有的框 输入: img:图像array bboxes:该图像包含的所有boundingboxs,一个list,每个元素为[x_min, y_min, x_max, y_max],要确保是数值 输出: crop_img:裁剪后的图像array crop_bboxes:裁剪后的bounding box的坐标list ''' w = img.shape[1] h = img.shape[0] x_min = w x_max = 0 y_min = h y_max = 0 for bbox in bboxes: x_min = min(x_min, bbox[0]) y_min = min(y_min, bbox[1]) x_max = max(x_max, bbox[2]) y_max = max(y_max, bbox[3])
d_to_left = x_min d_to_right = w - x_max d_to_top = y_min d_to_bottom = h - y_max
crop_x_min = int(x_min - random.uniform(0, d_to_left)) crop_y_min = int(y_min - random.uniform(0, d_to_top)) crop_x_max = int(x_max + random.uniform(0, d_to_right)) crop_y_max = int(y_max + random.uniform(0, d_to_bottom))
crop_x_min = max(0, crop_x_min) crop_y_min = max(0, crop_y_min) crop_x_max = min(w, crop_x_max) crop_y_max = min(h, crop_y_max)
crop_img = img[crop_y_min:crop_y_max, crop_x_min:crop_x_max]
crop_bboxes = list() for bbox in bboxes: crop_bboxes.append([bbox[0] - crop_x_min, bbox[1] - crop_y_min, bbox[2] - crop_x_min, bbox[3] - crop_y_min])
return crop_img, crop_bboxes
def _shift_pic_bboxes(self, img, bboxes): ''' 参考:https://blog.csdn.net/sty945/article/details/79387054 平移后的图片要包含所有的框 输入: img:图像array bboxes:该图像包含的所有boundingboxs,一个list,每个元素为[x_min, y_min, x_max, y_max],要确保是数值 输出: shift_img:平移后的图像array shift_bboxes:平移后的bounding box的坐标list ''' w = img.shape[1] h = img.shape[0] x_min = w x_max = 0 y_min = h y_max = 0 for bbox in bboxes: x_min = min(x_min, bbox[0]) y_min = min(y_min, bbox[1]) x_max = max(x_max, bbox[2]) y_max = max(y_max, bbox[3])
d_to_left = x_min d_to_right = w - x_max d_to_top = y_min d_to_bottom = h - y_max
x = random.uniform(-(d_to_left - 1) / 3, (d_to_right - 1) / 3) y = random.uniform(-(d_to_top - 1) / 3, (d_to_bottom - 1) / 3)
M = np.float32([[1, 0, x], [0, 1, y]]) shift_img = cv2.warpAffine(img, M, (img.shape[1], img.shape[0]))
shift_bboxes = list() for bbox in bboxes: shift_bboxes.append([bbox[0] + x, bbox[1] + y, bbox[2] + x, bbox[3] + y])
return shift_img, shift_bboxes
def _filp_pic_bboxes(self, img, bboxes): ''' 参考:https://blog.csdn.net/jningwei/article/details/78753607 平移后的图片要包含所有的框 输入: img:图像array bboxes:该图像包含的所有boundingboxs,一个list,每个元素为[x_min, y_min, x_max, y_max],要确保是数值 输出: flip_img:平移后的图像array flip_bboxes:平移后的bounding box的坐标list '''
flip_img = copy.deepcopy(img) h, w, _ = img.shape
sed = random.random()
if 0 < sed < 0.33: flip_img = cv2.flip(flip_img, 0) inver = 0 elif 0.33 < sed < 0.66: flip_img = cv2.flip(flip_img, 1) inver = 1 else: flip_img = cv2.flip(flip_img, -1) inver = -1
flip_bboxes = list() for box in bboxes: x_min = box[0] y_min = box[1] x_max = box[2] y_max = box[3] if inver == 0: flip_bboxes.append([x_max, h - y_min, x_min, h - y_max]) elif inver == 1: flip_bboxes.append([w - x_max, y_min, w - x_min, y_max]) elif inver == -1: flip_bboxes.append([w - x_min, h - y_max, w - x_max, h - y_min])
return flip_img, flip_bboxes
def dataAugment(self, img, bboxes): ''' 图像增强 输入: img:图像array bboxes:该图像的所有框坐标 输出: img:增强后的图像 bboxes:增强后图片对应的box ''' change_num = 0 while change_num < 1:
if self.is_rotate_img_bbox: if random.random() > self.rotation_rate: change_num += 1 angle = random.uniform(-self.max_rotation_angle, self.max_rotation_angle) scale = random.uniform(0.7, 0.8) img, bboxes = self._rotate_img_bbox(img, bboxes, angle, scale)
if self.is_shift_pic_bboxes: if random.random() < self.shift_rate: change_num += 1 img, bboxes = self._shift_pic_bboxes(img, bboxes)
if self.is_changeLight: if random.random() > self.change_light_rate: change_num += 1 img = self._changeLight(img)
if self.is_addNoise: if random.random() < self.add_noise_rate: change_num += 1 img = self._addNoise(img) if self.is_cutout: if random.random() < self.cutout_rate: change_num += 1 img = self._cutout(img, bboxes, length=self.cut_out_length, n_holes=self.cut_out_holes, threshold=self.cut_out_threshold) if self.is_filp_pic_bboxes: if random.random() < self.flip_rate: change_num += 1 img, bboxes = self._filp_pic_bboxes(img, bboxes)
return img, bboxes
class ToolHelper(): def parse_xml(self, path): ''' 输入: xml_path: xml的文件路径 输出: 从xml文件中提取bounding box信息, 格式为[[x_min, y_min, x_max, y_max, name]] ''' tree = ETl.parse(path) root = tree.getroot() objs = root.findall('object') coords = list() for ix, obj in enumerate(objs): name = obj.find('name').text box = obj.find('bndbox') x_min = int(box[0].text) y_min = int(box[1].text) x_max = int(box[2].text) y_max = int(box[3].text) coords.append([x_min, y_min, x_max, y_max, name]) return coords
def save_img(self, file_name, save_folder, img): cv2.imwrite(os.path.join(save_folder, file_name), img)
def save_xml(self, file_name, save_folder, img_info, height, width, channel, bboxs_info,image_name,image_folder,image): ''' :param file_name:文件名 :param save_folder:#保存的xml文件的结果 :param height:图片的信息 :param width:图片的宽度 :param channel:通道 :return: ''' folder_name, img_name = img_info
E = objectify.ElementMaker(annotate=False)
anno_tree = E.annotation( E.folder(folder_name), E.filename(img_name), E.path(os.path.join(folder_name, img_name)), E.source( E.database('Unknown'), ), E.size( E.width(width), E.height(height), E.depth(channel) ), E.segmented(0), )
labels, bboxs = bboxs_info for label, box in zip(labels, bboxs): if box[0] > box[2]: box[0], box[2] = box[2], box[0] if box[1] > box[3]: box[1], box[3] = box[3], box[1] cv2.rectangle(image, (box[0],box[1]), (box[2], box[3]), (0, 255, 0), 4) cv2.imwrite(os.path.join(image_folder, image_name), image) anno_tree.append( E.object( E.name(label), E.pose('Unspecified'), E.truncated('0'), E.difficult('0'), E.bndbox( E.xmin(box[0]), E.ymin(box[1]), E.xmax(box[2]), E.ymax(box[3]) ) ))
etree.ElementTree(anno_tree).write(os.path.join(save_folder, file_name), pretty_print=True)
if __name__ == '__main__':
need_aug_num = 30
is_endwidth_dot = True
dataAug = DataAugmentForObjectDetection()
toolhelper = ToolHelper() parser = argparse.ArgumentParser() parser.add_argument('--source_img_path', type=str, default='data/Images') parser.add_argument('--source_xml_path', type=str, default='data/Annotations') parser.add_argument('--save_img_path', type=str, default='data/Images2') parser.add_argument('--save_img_path2', type=str, default='data/Images3') parser.add_argument('--save_xml_path', type=str, default='data/Annotations2') args = parser.parse_args() source_img_path = args.source_img_path
source_xml_path = args.source_xml_path
save_img_path = args.save_img_path save_img_path2 = args.save_img_path2 save_xml_path = args.save_xml_path
if not os.path.exists(save_img_path): os.mkdir(save_img_path)
if not os.path.exists(save_xml_path): os.mkdir(save_xml_path)
for parent, _, files in os.walk(source_img_path): files.sort() for file in files: cnt = 0 pic_path = os.path.join(parent, file) xml_path = os.path.join(source_xml_path, file[:-4] + '.xml') values = toolhelper.parse_xml(xml_path) coords = [v[:4] for v in values] labels = [v[-1] for v in values]
if is_endwidth_dot: dot_index = file.rfind('.') _file_prefix = file[:dot_index] _file_suffix = file[dot_index:] img = cv2.imread(pic_path)
while cnt < need_aug_num: auged_img, auged_bboxes = dataAug.dataAugment(img, coords)
auged_bboxes_int = np.array(auged_bboxes).astype(np.int32) height, width, channel = auged_img.shape img_name = '{}_{}{}'.format(_file_prefix, cnt + 1, _file_suffix) toolhelper.save_img(img_name, save_img_path, auged_img)
toolhelper.save_xml('{}_{}.xml'.format(_file_prefix, cnt + 1), save_xml_path, (save_img_path, img_name), height, width, channel, (labels, auged_bboxes_int),img_name,save_img_path2,auged_img) print(img_name) cnt += 1
|